\(\int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [127]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 145 \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {11 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {13 \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {7 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d} \]

[Out]

11/4*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*sec(d*x+c)^2*tan(d*x+
c)/d/(a+a*sec(d*x+c))^(3/2)-13/3*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)+7/6*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/a
^2/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3901, 4095, 4086, 3880, 209} \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {11 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {7 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{6 a^2 d}-\frac {\tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {13 \tan (c+d x)}{3 a d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(11*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Sec[c + d*x]^2
*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) - (13*Tan[c + d*x])/(3*a*d*Sqrt[a + a*Sec[c + d*x]]) + (7*Sqrt
[a + a*Sec[c + d*x]]*Tan[c + d*x])/(6*a^2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec ^2(c+d x) \left (2 a-\frac {7}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {7 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}-\frac {\int \frac {\sec (c+d x) \left (-\frac {7 a^2}{4}+\frac {13}{2} a^2 \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{3 a^3} \\ & = -\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {13 \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {7 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}+\frac {11 \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {13 \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {7 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}-\frac {11 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = \frac {11 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {13 \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {7 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.79 \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (33 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) (1+\sec (c+d x))+2 \sqrt {1-\sec (c+d x)} \left (-19-12 \sec (c+d x)+4 \sec ^2(c+d x)\right )\right ) \tan (c+d x)}{12 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((33*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*(1 + Sec[c + d*x]) + 2*Sqrt[1 - Sec[c + d*x]]*(-19 - 12*S
ec[c + d*x] + 4*Sec[c + d*x]^2))*Tan[c + d*x])/(12*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

Maple [A] (verified)

Time = 0.98 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.33

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (3 \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}+33 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {3}{2}}-46 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+27 \csc \left (d x +c \right )-27 \cot \left (d x +c \right )\right )}{12 d \,a^{2} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\) \(193\)

[In]

int(sec(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/12/d/a^2*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(3*(1-cos(d*x+c))^5*csc(d*x+c)^5+33*ln(csc(d*x+c)-co
t(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(3/2)-46*(1-cos(d*x+c))^3*
csc(d*x+c)^3+27*csc(d*x+c)-27*cot(d*x+c))/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 387, normalized size of antiderivative = 2.67 \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (19 \, \cos \left (d x + c\right )^{2} + 12 \, \cos \left (d x + c\right ) - 4\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}, -\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left (19 \, \cos \left (d x + c\right )^{2} + 12 \, \cos \left (d x + c\right ) - 4\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/24*(33*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a
*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d
*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(19*cos(d*x + c)^2 + 12*cos(d*x + c) - 4)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c)), -1/12*(33*sqrt(2)
*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*(19*cos(d*x + c)^2 + 12*cos(d*x + c) - 4)*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))]

Sympy [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**4/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**4/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{4}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^4/(a*sec(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 1.19 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.23 \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {{\left ({\left (\frac {3 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {46 \, \sqrt {2}}{\mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {27 \, \sqrt {2}}{\mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {33 \, \sqrt {2} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{12 \, d} \]

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/12*(((3*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/sgn(cos(d*x + c)) - 46*sqrt(2)/sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c
)^2 + 27*sqrt(2)/sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x +
 1/2*c)^2 + a)) - 33*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(s
qrt(-a)*a*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^4\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(1/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(3/2)), x)